52 research outputs found

    Virgo and the quest for gravitational waves

    No full text
    In the past ten years,several giant interferometers have been built around the world with the goal ofa first direct detection ofgravitational waves.The most sensitive detectors,2 interferometers for the US LIGO collaboration and the detector built by the Italo-French collaboration Virgo (fig.1) are approaching their design sensitivity. Scientific exploitation ofthese instruments is now starting ..

    Data Analysis Challenges for the Einstein Telescope

    Full text link
    The Einstein Telescope is a proposed third generation gravitational wave detector that will operate in the region of 1 Hz to a few kHz. As well as the inspiral of compact binaries composed of neutron stars or black holes, the lower frequency cut-off of the detector will open the window to a number of new sources. These will include the end stage of inspirals, plus merger and ringdown of intermediate mass black holes, where the masses of the component bodies are on the order of a few hundred solar masses. There is also the possibility of observing intermediate mass ratio inspirals, where a stellar mass compact object inspirals into a black hole which is a few hundred to a few thousand times more massive. In this article, we investigate some of the data analysis challenges for the Einstein Telescope such as the effects of increased source number, the need for more accurate waveform models and the some of the computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of GR

    Bursts in Virgo

    No full text
    Oral presentatio

    Bursts in Virgo

    No full text
    Oral presentatio

    Virgo and the quest for gravitational waves

    No full text
    In the past ten years,several giant interferometers have been built around the world with the goal ofa first direct detection ofgravitational waves.The most sensitive detectors,2 interferometers for the US LIGO collaboration and the detector built by the Italo-French collaboration Virgo (fig.1) are approaching their design sensitivity. Scientific exploitation ofthese instruments is now starting ..

    Status of coalescing binaries search activities in Virgo

    No full text
    The interferometric gravitational wave detector Virgo is undergoing an advanced phase of its commissioning, during which short runs are routinely performed, in which data are analyzed online and offline, searching for signals from coalescing binary systems. In this report we present the progress of the coalescing binaries search activities in Virgo, and we describe details of the detection pipeline including hardware injections, vetoes, and parameter estimation, using recent data taking

    The Virgo 3 km interferometer for gravitational wave detection

    No full text
    Virgo, designed, constructed and developed by the French-Italian VIRGO collaboration located in Cascina (Pisa, Italy) and aiming to detect gravitational waves, is a ground-based power recycled Michelson interferometer, with 3 km long suspended Fabry -Perot cavities. The first Virgo scientific data-taking started in mid-May 2007, in coincidence with the corresponding LIGO detectors.The optical scheme of the interferometer and the various optical techniques used in the experiment, such as the laser source, control, alignment, stabilization and detection strategies are outlined.The future upgrades that are planned for Virgo from the optical point of view, especially concerning the evolution of the Virgo laser, are presented.Finally, the next generation of the gravitational wave detector (advanced Virgo) is introduced from the point of view of the laser system

    Improving the timing precision for inspiral signals found by interferometric gravitational wave detectors

    No full text
    As they take data and improve their sensitivities, interferometric gravitational wave detectors will eventually detect signals emitted by inspiralling compact binary systems. Determining the sky position of the source will require that the signal be recorded in several detectors. The precision of the source direction determination will be driven by that of the time-of-flight measurements between detectors, and ultimately by the timing precision at the level of each detector. The latter is limited by the noise of the detector and the use of template banks, which introduce some mismatches between the parameters of the signal and the parameters of the template used to detect it. The standard way for signal timing is based on referring to the end time of the signal. In this paper we show that this is not an optimal choice and the timing precision can be improved referring to a time when the signal crosses some reference frequency, whose optimal value depends on the detector sensitivity
    corecore